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Abstract
A simple model was developed which explains how a continuum percolation system can attain a
conductivity critical exponent, t , lower than the universal value. In this model, a structure
parameter, κ , was developed to evaluate the geometry of the original conductor shape. Another
parameter η accounts for the average backbone probability density 〈MB〉 of the conductive
phase within the percolation system. The structure parameter κ was used to evaluate the
‘sensitivity’ of the critical exponent t to the average backbone probability density 〈MB〉. As
〈MB〉 increased, a lower t could be obtained. To test this model experimentally, a Cu–Cu2O
conductor–insulator material was developed and tested. In this conductor–insulator material,
C was used to reduce Cu2O into Cu and CO, which produced a material with an optimum 〈MB〉
and allowed the critical exponent t = 0.87 ± 0.1 at pc = 0.23 ± 0.01 to be achieved.

The transport properties of a percolation system have
received much attention around the world for several
decades [1–4], because their comprehension is important
for the understanding of the disordered systems. A major
research challenge in a percolation system is the dc electrical
conductivity. When the dc electrical conductivity, σeff, of a
percolation system is measured as a function of the volume
concentration p of the conducting phase, it follows a power
law behavior of the form [5–8]:

σeff ∝ (p − pc)
t , p > pc

σeff ∝ (pc − p)−s, p < pc

(1)

where pc is the percolation threshold, t and s are the
electrical conductivity critical exponents above and below the
percolation threshold, respectively. In 1980s, the values of the
conductivity critical exponents of the percolation system were
considered to be universal such that t ≈ 1.3–1.4, s ≈ 0.5(d =
2) and t ≈ 1.6–2.0, s ≈ 0.6(d = 3) based on renormalization
group theory [8, 9], and in practical applications, they were
generally considered to belong to the same universality class as
the corresponding lattice percolation problems [10]. However,
some experimental and numerical results have indicated that
the lattice percolation problems and the practical application
problems may belong to different universality classes [10–14].
In past research, several groups measured that the critical

exponent was in good agreement with the universal value
of t = 2.0 for various disordered conductor–insulator
composites [15–18], while others measured that the critical
exponent was larger than the universal value [13, 15, 19]. With
the mean-field type argument, Kogut and Straley (KS) [20]
first realized that if the low-conductance bonds in percolation
resistor networks were characterized by a certain form of
anomalous conductivity distribution, then the universality of
the conductivity exponents would be broken. In their model,
by assigning to each neighboring pair in a regular lattice,
a bond with finite conductivity g with probability p and
zero conductivity with probability 1 − p, the resulting bond
conductivity distribution function becomes:

ρ(g) = ph(g) + (1 − p)δ(g) (2)

where δ(g) is the Dirac delta function and h(g) is the
distribution function of the finite bond conductivities. If h(g)

has a power law divergence for small g of the form

lim
g→0

∝ g−α (3)

where α � 1, then the universality is lost for sufficiently large
values of exponent α.

Based on the KS model, two models have been developed
to explain the non-universality of the critical exponent in
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percolation systems, known as the ‘Random Void’ model
(Swiss–Cheese model) where the voids between the particles
carry the current [11, 12]; and the ‘tunneling’ model where
the resistance between adjacent particles is determined by
a tunneling process [21–23]. Conductor–insulator systems,
such as granular metals (or metal-oxides) and carbon black-
polymer composites are well explained by the random void
and tunneling models, respectively. However, in both random
void and tunneling models the conductors are both spherical
and these two models are not able to describe the percolation
system with non-spherical conductors. Therefore, one has to
come up with a model for a possible non-universal behavior
in the conductor–insulator composite system. In recent years,
plenty of attention has been focused on the utility of the
‘percolation backbone’ to demonstrate the real path that carries
the current. In a percolation system, the percolation cluster
can be decomposed into two categories: the ‘backbone’ and
‘dangling ends’ [10] that show different properties.

Although the non-universality of physical properties in
percolation systems was presented about thirty years ago, the
discrepancy between the numerous experimental results and
the corresponding available theories still remains incompletely
understood. For the vast majority of these cases, the critical
exponent was not found to be lower than the universal
value [24, 25], and to our knowledge, there are no theories that
explicitly deal with the electrical conductivity critical exponent
lower than the universal value. In this study, we would like to
give a simple model with two key probability densities: the
backbone density MB and the dangling ends density MD as the
parameters. The backbone (dangling ends) density is defined
as the total backbone (dangling ends) proportion belongs to
the percolation infinite clusters. We also suggest a new
system, C reduced Cu/Cu2O cermet, in which a conductivity
critical exponent less than the universal value is predicted and
observed.

In order to realize a critical exponent lower than the
universal value, the conductance between two randomly
selected particles (or nodes), g, is given by

g = g0e−κ MD/MB (4)

where g0 is a constant, MD and MB are dangling ends and
backbone densities belong to two randomly selected particles,
and κ is an ad hoc ‘structure parameter’, which represents
the geometry and topology structure of the conductor. In a
real conductor–insulator percolation system, the value of κ

will reach its highest value when the geometrical shape of
the original conductor is spherical, because a sphere is the
simplest geometrical shape. The value of κ will decrease with
increasing geometrical complexity of the conductor. In this
equation, the tunneling conductance parts should be considered
as a part of the backbone. In order to find the conduction
distribution function of the network H (MD/MB), one must
give the distribution function of the dangling ends and the
backbone. In this case, the dangling ends and backbone
distribution function is given by:

H (MD/MB) ∝ η2 MD

MB
exp

(
−ηMD

MB

)
(5)

where η is the average value of MB/MD written as η =
〈MB/MD〉. In a real percolation network, this value is decided
by the structure of the backbone and the dangling ends. It
will achieve its maximum value with the ‘highest-structure’
of the conductor, because most of the ‘arms’ [21] in the
aggregates get entangled each other. Equation (5) will peak
at η = MB/MD, and the distribution width is also decided
by MB/MD. The general relationship between these two
distribution functions can be written as [23]:

f (g) = H (MD/MB)
d(MD/MB)

dg
(6)

using equations (4)–(6), it can be written as:

f (g) ∝ [ln(g/g0)]g(
η

κ
−1) (7)

for small g values, it can be deduced

g(
η

κ
−1) = g−α (8)

following the above equations, the exponent α is given by:

α = 1 − η

κ
(9)

thus, combined with Kogut and Straley’s model [20]

t = tun + α

1 − α
(10)

the critical exponent t can be expressed as:

t = tun + κ

η
− 1 = tun + κ

〈
MD

MB

〉
− 1 (11)

where tun is the accepted universal value of the critical
exponent.

In equation (11), if the backbone contribution to the
conductivity is higher than the dangling ends contribution, a
t value less than the universal value can be realized. With
equations (1) and (11), it can be seen that the electrical
conductivity is not just dependent on the backbone density, but
also on the ‘structure factor’ κ . This phenomenon has already
been proved by Paul [26], that the ‘shortest path’ between
two randomly chosen particles is not the same even with the
same backbone density. Figure 1 gives the simulated results
of the critical exponent t as a function of average backbone
density 〈MB〉 with different κ values. It is clear that the critical
exponent t decreases with increasing backbone density 〈MB〉
for fixed κ value. The value of κ is decided by the structure of
the backbone, and it represents the ‘sensitivity’ of the critical
exponent to the average backbone density 〈MB〉. In figure 1, it
can be seen that the t value becomes more and more sensitive
to 〈MB〉 with increasing κ value1.

According to Balberg’s description [21], the structure of
the conductor can be divided into ‘high-structure’ and ‘low-
structure’. The larger and complicated aggregates are usually
called ‘high-structure’, while the smaller and geometrically
simpler aggregates are called ‘low-structure’. The universal,
or the lowest value of the conductivity exponent, can be

1 The decision of the detailed value of t will be discussed in our future work.
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Figure 1. Critical exponent t as a function of average backbone
density 〈MB〉.
(This figure is in colour only in the electronic version)

achieved with the ‘highest-structure’ because the ‘arms’ of
the ‘high-structure’ conductor entangle while the centers still
form a random distribution. According to his argument,
it can be deduced that more backbone can be formed in
the ‘high-structure’ conductor percolation system than in the
‘low-structure’ percolation system. However, it is still not
clear how the structure of the conductor is defined as the
‘highest’, and how to make the structure of the conductor
higher. In prior research results, both from experiments and
computer simulations, most of the mass of the infinite network
at the threshold belongs to the dangling ends, not to the
backbone [27]. Thus, most of the mass contained in p makes
no contribution to the conductivity g, and as noted, only the
backbone contributes to the conductivity of the cluster. In
a percolation system, the backbone structure is complicated.
The main roads are composed by links and blobs, and all of
the links and blobs have their dangling ends. Therefore the
conductivity critical exponent differs with different conductor–
insulator materials due to the different density of the backbone
and the dangling ends. Due to the critical exponent t is a
function of α, and α is a function of η, which depends on
the backbone density of the conductor, it can be deduced that
the higher the average backbone density of the conductor,
the higher the η value and the lower the critical exponent
of the system will be. If considered from the geometrical
and topological aspect, it is not very hard to find that the
more complex the conductor’s geometrical shape, the easier
for them to connect each other, which increases the probability
of forming a backbone and increasing the backbone density.
Thus, it brings us back to the question how can we make
the backbone density of the conductor higher to increase the
η value, and thus obtain a relatively low conductivity critical
exponent?

To obtain a high backbone density in a real percolation
conductor–insulator system, electrical conductivity studies
were performed on a Cu/Cu2O cermet composite made via
a C reduction method. High purity Cu2O and C powders
were used to prepare this insulator–conductor composite. The

average particle size of Cu2O was about 10 μm, and C was
in the form of 100–200 nm diameter spherical agglomerates.
Powders were ball-milled in dehydrated ethyl alcohol for 12 h,
and subsequently dried in a furnace at 80 ◦C. After drying,
the mixture powders were heated in a graphite die to 650 ◦C
(20 ◦C min−1, no pressure, 60 min soak) followed by heating
to 1050 ◦C (20 ◦C min−1, 25 MPa pressure, 40 min soak). The
furnace chamber was purged with 1.0 atm of argon gas from
the start of the hot pressing procedure. After HP processing,
the relative density of the final materials were measured to be
higher than 98%.

The reduction procedure is very complicated [28] because
there will be CO produced during this procedure, and CO will
reduce the Cu2O matrix into Cu. In the final stage, C will
be oxidized into CO2, and the content of the conductor Cu,
which was reduced by the C, can be calculated by the following
reaction:

C + 2Cu2O = 4Cu + CO2↑. (12)

Specimens were cut into the shape of bar with a size of
10 mm×10 mm×30 mm, and all results were obtained at room
temperature. Four platinum wire electrodes were wrapped
around the cermet samples and non-fluxed platinum paste was
painted to decrease the contact resistance. The dc electrical
conductivity of the composites was measured with a 4-probe
technique [13, 15, 24].

In order to find the conductivity exponent, the conven-
tional three parameters, pc, t , and σ0 were used. In figure 2(a),
the room temperature electrical conductivity lg σ0 as a func-
tion of the Cu2O volume concentration p is shown, and the
same data are demonstrated as a log–log plot in figure 2(b). As
can be seen from this figure, the conductivity data follow the
power law behavior of equation (1) with percolation threshold
pc = 0.23 ± 0.01, and the fitted value of the critical exponent
t = 0.87±0.1, which is lower than the universal value, was cal-
culated with least-square method. In this system, there are no
oxide coatings between the tightly compressed and amorphous
metal grains, and tunneling cannot occur along the current car-
rying backbones of this C reduced Cu/Cu2O cermet system;
thus, the situation can not be mapped onto the tunneling model
in this system. Meanwhile, the structure of the conductor is
not spherical; hence, the random void model is not applicable
in this system either. Therefore, we use the backbone density
to give an explanation of the low t value.

In a percolation network, according to equation (1), the
conductivity critical exponent depends on σeff and p, and the
backbone structure solely determines the conductivity of the
whole system [29]. In past research, a higher backbone density
was realized by increasing the conductor concentration, which
means the contribution of the increasing effective conductivity
came from the ‘extra’ conductor concentration. Hence,
according to equation (1), the critical exponent is not able to
achieve a value lower than the ‘universal value’ because of the
increasing conductor concentration p. In order to decrease the
t value, the effective electrical conductivity must be increased
but without increasing the conductor concentration p. It
was considered by Macheta [30] that the effective electrical
conductivity of a percolation system depends only on the links
of the backbone, and the conductivity contribution of the blobs
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Figure 2. (a) Conductivity as a function of volume concentration p for C reduced Cu/Cu2O cermet. (b) Log–log plot of the same data with
fits to equation (1).

Figure 3. Schematic diagram of three categories of conductor structure of the C reduced Cu2O /Cu cermet. The black dots represent the
agglomerates of C, the circles near them represent the Cu2O matrix, the arrows represent the CO flow, and the gray areas represent the
reduced conductor Cu. (a) and (b) represent the C reduced nearest contacted Cu2O particles before and after the reduction process; (c) and
(d) represent the CO reduced surfaces where it passes through before and after the reduction process; (e) and (f) represent the C and CO
reduced thin neck of the Cu2O matrix before and after the reduction process.

is irrelevant by using a hierarchical model for the backbone.
However, Alava proved that the blobs determine the critical
transport properties by finding the maximum flow of current
[29].

In this C reduced C/Cu2O cermet system, the conductor
Cu was not just reduced by C but also by the CO which was
produced by the reduction of CO2. Therefore, the structure
of the conductor did not just depend on C concentration, but
also depended on the flow of CO in the system. As CO was
flowing through the matrix, the surfaces of the matrix particles
were reduced into conductors. In addition, due to the diffusion
effect, C or CO will ‘penetrate’ part of the necks of the matrix
from one side to the other side to reduce the insulator necks
into conductor paths. Hence, the structure of the conductor Cu
was composed of three categories: firstly, the C reduced the

nearest contacted Cu2O particles; secondly, the CO reduced
the surfaces where it passed through; and thirdly, C and CO
reduced the thin necks of the Cu2O matrix. In these three
categories, the first one is the same as the former experimental
conductor backbone structures, but the second and the third
ones changed the backbone structure considerably. Due to the
fluidity of the CO, the resultant structure produced is more
flexible than the one produced by solid conductors directly.
CO is able to fill into tighter spaces, therefore, the current
flow paths or backbone density will be increased. In the third
category, the thin necks of the matrix will be ‘penetrated’
because of the reduction, which leads to the connection of the
non-connection agglomerates. Figure 3 gives the schematic
diagram of the three reduction categories. In this system, each
center of the C concentration can be considered as a Cayley tree

4



J. Phys.: Condens. Matter 20 (2008) 395235 W Z Shao et al

center. Although there are no loops in one Cayley tree [31], the
‘Cayley trees’ still have a probability to connect with each other
and form blobs. By this method, more ‘arms’ of the conductors
will entangled because the air acts as a fluid, consequently, it
can fill in small areas where the solid can not, and therefore,
more links and blobs will be formed in the final network, and
allow the conductor concentration to be more ‘effective’ to the
conductivity contribution.

In summary, we have used a simple percolation model
with structure parameter κ , dangling ends, and backbone
densities to study the possibility of attaining a conductivity
critical exponent t lower than the universal value. Our
results show that the conductivity critical exponent t decreases
with increasing average backbone density. The backbone
density, which is governed by the structure parameter density is
different with different structures of the conductor, which are
governed by the structure parameter κ , changes with respect
to different conductor structures. We designed a conductor–
insulator percolation material using C to reduce the Cu2O
matrix into Cu, to realize a low t value in a conductor–insulator
system. The experimental results show that the percolation
threshold pc = 0.23 ± 0.01, and the critical exponent t =
0.87 ± 0.1.
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